

Susan Laws, Ph.D.
Endocrinology Branch
Reproductive Toxicology Division
NHEERL
Office of Research and Development
U.S. EPA

In Vitro Aromatase Assay:

- A cytochrome P450 enzyme complex bound in endoplasmic reticulum
- Catalyzes the conversion of androgens to estrogens
 - Androstendione Estrone
- Present in ovary, placenta, testis, brain, bone, vasculature and adipose tissue
- Present in all vertebrates
- Known to be inhibited by EDCs

In Vitro Aromatase Assay: Prevalidation Studies

- Historical Perspective
 - EDSTAC recommended as alternative assay
 - EDSP Detailed Review Paper
 - Radiometric method
 - Human placental microsomes
 - Initial prevalidation studies
 - DRP protocol
 - Compared tissue sources for enzyme

Prevalidation Studies: Goals

- Optimize protocols
 - Enzyme, substrate and cofactor concentrations
 - Linear time course response
 - Positive control
- Performance Criteria
 - Intra- and inter-assay variation
 - Technician variation
- Compare placental and recombinant microsomes (11 test chemicals)
- Protocol for multi-laboratory studies

Reaction Mechanism: Androstenedione to Estrone

- Cytochrome P450arom and NADPH-cytochrome P450 reductase

In Vitro Aromatase Assay: Radiometric (³H₂0) Method

Microsomal (Arom(CYP19)) Complex

3H-Androstenedione and NADPH

Test Chemical

(0.1 nM - 1.0 mM)

3H2O

Postitive Control: 4-OH-androstenedione (100 nM)

Estrone

Indicators of Optimized Protocol

- Small fraction (10-15%) substrate converted to estrone
- Estrone production linear with time and enzyme concentration
- Estrone production dependent upon presence of enzyme and NADPH
- Estrone formation can be inhibited

(%) conversion substrate to product
Inhibited: 4OH-androstenedione (100nM)
Intra-assay (triplicates) CV=3%; Inter-assay (3 exp.) CV=7.4%
Aromatase Optimization Supplementary Studies
(pages 11,28,29)

Placental Microsomes: Product Formation versus Time

2.7, 5.1, 10, 14, 17.5% Substrate conversion over time Inhibited= 4OH-androstenedione (100 nM)

Estrogen Production: Human Placental Assay Results

Quick Response Task 2

(Table 1, pages 2-3)

Estrogen Production: Human Placental Assay Results
Quick Response Task 3
(Figure 3)

Placental Microsomes: Intra- and Inter-Assay Variance

- Intra-assay (triplicates)CV 1.4-7.5%
- Inter-assay (3 days)CV 1.7 – 11.5%

Human Recombinant: Protocol Optimization Experiments

7, 12, 25, 33, 42% Substrate conversion over time Inhibited= 4OH-androstenedione (100 nM)
Intra-assay (triplicates): CV = 1-3%
Inter-assay (2 days): CV = 5 - 20%

Estrogen Production: Human Placental Assay Results
Quick Response Task 4 and 5 (Tables 4, 5, Figures 5-7)

In Vitro Aromatase Assay: Optimized Assay Conditions

Assay Factor	Assay Type	
	Human Placenta	Human Recombinant
Protein (mg/mL)	0.0125	0.004
NADPH (mM)	0.3	0.3
[3H]ASDN (nM)	100	100
Incubation time (min)	15	15
Activity (nmol/mg/min)	0.053 +/-0.001 (3)	0.283 +/- 0.0005 (2)

Estrogen Production: Human Placental Assay Results Quick Response Task 4

Optimized Protocols: Variability Between Assay Day and Technicians

- Experiment design
 - Three technicians conducted each assay independently over 3 days
 - Triplicate assay tubes
 - Maximum aromatase activity determined
 - Comparison of coefficient of variations

Coefficient of Variation: Intra-assay, Assay Day, and Technician Variability

Parameter	Placenta	Recombinant
Triplicates	4%	3.7%
Tech 1	22%	17%
Tech 2	49% (12%)*	50% (11%)*
Tech 3	12%	19%
Day 3	36%	17%
Day 4	29%	30%
Day 5	47% (10%)*	53% (15%)*

(%)* CV after Tech 2, Day 5 data deleted Estrogen Production: Human Placental Assay Results

Quick Response Task 4, Tables 7 and 8

In Vitro Aromatase Assay: Comparison of Test Chemicals

- Experiment Design
 - Optimized protocols using placental and recombinant microsomes
 - Test chemicals (11, positives and negatives)
 - Complete concentration curve for each chemical ran on 4 separate days
 - Two technicians (one ran placental, the other recombinant)
 - Single set of test chemical concentrations shared by 2 tech. each day

Test Chemicals:

Inhibitors

- 4-OH-androstenedione
- Chrysin
- Ketoconazole
- Aminoglutethimide
- Econazole
- Genistein (?)

Negative for Inhibition

- Nonylphenol
- Atrazine
- Bis-(2-ethylhexyl)phthlate
- Lindane
- Dibenz(a,h)anthracene

In Vitro Aromatase Activity: Comparison of Inhibition

Recombinant Microsomes: 4-OH-androstenedione

Figure 10-Placenta aromatase response curves Figure 11-Recombinant aromatase response curves

In Vitro Aromatase Activity: Comparison of Inhibition

Human Placenta: Aminoglutethimide

Recombinant Microsomes: Aminoglutethimide

Figure 10-Placenta aromatase response curves Figure 11-Recombinant aromatase response curves

In Vitro Aromatase Activity: Examples of Data

Figure 10-Placenta aromatase response curves Figure 11-Recombinant aromatase response curves

Conclusions: Test Chemical Experiment

- Variability between reps. is greater than expected for both assays
 - IC50s for inhibitors (CVs ranged 7 49%)
- Technician error rather than inadequate protocol method is likely cause of variability
- Despite variability, both protocols correctly identified inhibitors

In Vitro Aromatase Assay: Next Steps

- Identify source of variability
 - Substrate concentration
 - Technician training
- Conduct additional experiment to evaluate day-to-day and technician variability (e.g, better estimate of performance criteria)
 - 2 Tech., 3 test chemicals (8-9 concentrations in triplicates), 4 days, both protocols

In Vitro Aromatase Assay: Next Steps

- Rerun assays for test chemicals with incomplete curves
 - econazole, ketoconazole
- Evaluate the usefulness of estrone measurement rather than ³H₂0 for recombinant protocol
- Prepare updated protocols for validation
 - Broader concentration range for test chemicals
 - Guidelines for data analysis and interpretation

In Vitro Aromatase Assay: Summary

- Protocols optimized for placenta and recombinant assays
- Assays produce similar data
- Assays differ in advantages/disadvantages
- High throughput assays
 - KGN cell line
 - CYP19/Fluorescent substrate (HTP) kit available

Acknowledgements:

Battelle Memorial Institute Columbus, OH

- David Houchens
- Paul Feder
- Terri Pollock

Chemical and Life Sciences Research Triangle Institute RTP, NC

- Sherry Black
- RTI Technical Staff
- James Mathews
- Marcia Phillips
- Rochelle Tyl

Endocrinology Branch RTD, NHEERL, ORD U.S. EPA RTP, NC

- Ralph Cooper
- Earl Gray
- Tammy Stoker
- Vickie Wilson
- Jerome Goldman

OSCP, U.S. EPA Washington, DC

- Gary Timm
- Jim Kariya
- Jane Scott-Smith